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Abstract

This paper examines the performance of RAID the First, a _)rototype disk array built by the

RAID group at U.C. Berkeley. A hierarchy of bottlenecks was dmcovered in the system that limit
overall performance. The most serious is the memory system contention on the Sun4/280 host

CPU, which limits array bandwidth to 2.3 MBytes/sec. The array performs more successfully
on small random operations, achieving nearly 300 I/Os per second before the Sun4/280 becomes

CPU-limited. Other bottlenecks in the system are the VME backplane, bandwidth on the disk

controller, and overheads associated with the SCSI protocol All are examined in detail.
The main conclusion of this report is that to achieve the potential bandwidth of arrays, more

powerful CPUs alone will not sumce. Just as important are adequate host memory bandwidth
and support for high bandwidth on disk controllers. Current disk controllers are more often

designed to achieve large numbers of small random operations, rather than high bandwidth.

Operating systems also need to change to support high bandwidth from disk arrays. In particu-
lar,they should transferdata in largerblocks,and should support asynchronous I/O toimprove

sequentialwrite performance.



1 Introduction

The increasingperformancegap between CPUs and I/O systemsthreatensto createan I/O bottle-

neck that willlimitoverallsystem performance [RAID]. Disk arraysare one attractivesolutionto

thisproblem. Enormous I/O bandwidth can be achievedifmany diskscan be accessedin parallel

on an array. RAIDs (Redundant Arrays of InexpensiveDisks)add redundancy to arraysin an

attempt to make them atleastas reliableas a single,largehigh-reliabilitydisk.

In 1989,the RAID group at U.C. Berkeleybuilta prototypeRAID to testthe differentstriping

and parityschemes proposed in [RAID]. This prototype,calledRAID the First(RAID-I), was

constructedfrom commercially available5 1/4" SCSI disks,disk controllers,and a workstation

actingas a host processor.

RAID-I performs fairlysuccessfullyon smallrandom operations,achievingnearly300 I/Os per

second beforehost CPU utilizationbegins to limitperformance. Unfortunately,RAID-I isnot

as successfulon largesequentialoperations.For thisworkload,host memory system contention

limitssystem bandwidth to 2.3 MBytes per second. Other bottlenecksin the system are the VME

backplane,bandwidth on the diskcontroller,and overheadsassodated with the SCSI protocol.

The resultsof thisstudy suggest that to achievethe potentialbandwidth of arrays,more

powerfulCPUs alonewillnot suffice.Just asimportant are adequate host memory bandwidth and

support forhigh bandwidth on diskcontrollers.Current disk controllersare more oftendesigned

to achievelargenumbers of small random operations,ratherthan high bandwidth. Operating

systems alsoneed to change to support high bandwidth from disk arrays. In particular,they

shouldtransferdata in largerblocks,and shouldsupport asynchronous I/O to improve sequential
writeperformance.

This paper describesthe RAID-I prototype.Itpresentsmeasurements ofthe performance this

configurationhas delivered,and explainstheperformancelimitationspresentindifferentpartsofthe

system. In Section2,the system hardware isdescribedindetailand the SCSI protocolisdiscussed.

In Section3, the methods and toolsused for the researchare discussed.Section4 examines the

performanceof the system,describesperformancebottlenecks,and attributesoverheadsto various

piecesofthe hardware. These resultsincludemeasurements forI/O performed on raw diskdevices,

as wellas those that includethe softwareoverhead of the Spriteoperatingsystem and of RAID

software.Finally,Section5 draws conclusionsabout RAID-I performance,and discussesplansfor

a second RAID prototype.

2 RAID the First

This section presents a description of the hardware that makes up the first RAID prototype. It

also touches briefly on some software issues that will be important in subsequent sections of the
report.

Figure 1 shows the configuration of RAID-I. The components of RAID-I are off-the-sheif parts
that use standard interfaces. There is a Sun4/280 host processor that is attached over a VME

backplane to Interphase Jaguar Host Bus Adaptors. The Jaguars control strings of Imprimis Wren

IV disks. The Jaguars and Wrens communicate using the SCSI protocol.

We chose the SCSI interface to the disks for several reasons. SCSI is a widely available industry
standard. SCSI disks are available in very small formats, and axe very inexpensive because their

price is driven by the PC market. In addition, SCSI implementations are highly integrated and
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Figure 1: Hardware configuration of tLkID-I.



intelligent,which was appealing to us in our desire to use components that were as independent

as possible. Finally, Imprimis donated 32 Wren IV SCSI disks for use in RAID-I. Because SCSI is

an intelligent protocol, its implementation incurs more overhead than simple protocols. We chose
to use it in spite of this performance penalty because its intelligence made our work easier. The

measured overheads of the SCSI components are discussed in Section 4.6.

The RAID-I host processor is a Sun4/280, a 32-bit RISC machine that uses a SPARC chip

capable of about 10 VAX MIPS. Devices attached to the Sun4/280 transfer data to and from it

across the VME backplane, through the Sun4's virtual memory. (Limitations of the Sun4/280's

direct virtual memory addressing scheme are discussed below in Section 2.4.2.) The Sun4/280 host

processor is named "raid", and it runs the Sprite operating system, developed at U.C. Berkeley.

Attached to the host processor are several Host Bus Adaptor (HBA) boards, which serve as

interfaces between the host and disks attached to SCSI strings. The HBAs used in RAID-I are

Interphase Jaguar HBAs [Jaguar]. Each Jaguar board can control the communication for two SCSI

strings, with four disks per string. In all, there are 7 SCSI strings currently in the array, attached

to four Jaguar HBA boards, for a total of 28 disks in the system.

Software on the host allows the Sun4/280 to communicate with the Jaguar. To access individual

disks, Mendel Rosenblum, a member of the Sprite group, wrote a Jaguar-specific SCSI device driver

that changes commands to the Jaguar format and sends them to the HBA. To access groups of

disks in one of the various RAID levels, Ed Lee, a member of the RAID group, wrote a RAID

driver that controls striping, parity and reconstruction [Lee].

The remainder of this section focuses on specific pieces of RA.ID-I. Section 2.1 examines the

WrenIV disk, including the use of the Zone Bit Recording technique, buffers on the disk, and

the user-settable parameters Buffer Full Ratio and Buffer Empty Ratio. Section 2.2 discusses the

setup of commands on the Jaguar Host Bus Adaptor. Section 2.3 describes the SCSI protocol used

by the Jaguar and the Wren IV disks. Finally, some problems encountered with the Sprite and

the Sun4/280 that will be important in the subsequent discussion on performance are included in
Section 2.4.

2.1 The WREN IV Disk

The Imprimis Wren IV is a 5 1/4", 344 MByte disk drive. The disks used in RAID-I have an 80188

processor and a SCSI interface using the Emulex chip. Characteristics of the Wren IV disks are

summarized in Table 1 [Wren].

2.1.1 Zone Bit Recording on the Wren IV

The Wren IVs make use of the technique of Zone Bit Recording, resulting in a variable number of

sectors per track [ZBR]. Unlike most disks, in which each track on the disk has a fixed number of

sectors determined by the length of the innermost track, the Wrens make use of the added capacity

available from track lengths that are progressively larger as the disk head moves from the innermost

to the outermost track. Adjacent tracks differ in capacity by only a few bytes. Since sectors never

span track boundaries on a Wren, extra bytes available on successive tracks are ignored until there

are enough unused bytes on a given track to form the largest allowed sector (4096 bytes) plus at

least 100 bytes for overhead information. Once this amount of capacity has accumulated, a new

sector is made available on this track and on all subsequent trar_ks of larger diameter. The disk is

thus divided into "zones", with all tracks in a zone having the same number of available sectors.



Becausethereare differentnumbersof sectorsper track, the transfer rate of data off the
disk headis alsovariable. It is highestat the outermosttrack, averaginga sustainedrate of
1.3MBytes/sec.

2.1.2 Disk Buffers

Although the data comesoff the disk head at this rate of approximately 1.3 MBytes/sec, it is
transferred between the disk and the host across the SCSI bus at 4 MBytes/sec, a rate that is

negotiated between the disk and the HBA when power is turned on. To make such transfers

possible, the Wren IV is equipped with a 32KByte disk buffer. Data sent across the SCSI bus

goes directly to or from the disk buffer, rather than the disk medium. The disk buffers can be
used as simple speed-matching buffers, or they can perform read-ahead in order to improve the

performance of sequential read operations. The effect of enabling the disk buffer for read-ahead is

examined in Section 4.2.1.

2.1.3 Buffer Full tLatio and Buffer Empty Ratio Parameters

Two user-settable parameters, the Buffer Full and Buffer Empty Ratios, control the operation of

the disk buffers. On a read operation, the disk waits until as much data as is mandated by the

Buffer Full Ratio (BFR) parameter has been transferred off the disk and into the disk buffer before

initiating a reconnect to transfer the data to the host. On a write operation, data is transferred
from the host across the SCSI bus to the disk buffer; when the buffer fills, the disk disconnects

from the SCSI bus to free the bus while the disk empties some of the data from its disk buffer

onto the disk medium. The disk will not reestablish communication with the host (reconnect) to

receive more data into its disk buffer until the disk consumes (empties) enough data from its buffer

to satisfy the Buffer Empty Ratio (BER). (See Section 2.3 for a complete description of the SCSI

protocol, including the use of disconnects and reconnects.)

In the SCSI protocol, the BER and BFR are expressed as numbers from 0 to 255, and the ratios

are obtained by dividing those numbers by 255. The resulting ratio is multiplied by the size of the

disk buffer on a particular SCSI disk to obtain the number of bytes represented by the BFR and

BER for a specific disk. For example, on the Wrens, a BFR of 80 hex (128 decimal) represents

a BFR of 128/255, or 1/2. On the Wrens, this corresponds to 16 KBytes of the 32 KByte track

buffer. So, on large reads, the disk will wait until 16 KBytes of read data are in its buffer before

attempting to obtain control of the SCSI bus in order to send data across the bus to the host.

Two things should be noted in connection with the BFtt and BER. First, I/O completions do
not wait for the ratios to be met. For example, if the BFR is 16KBytes, as in the previous example,

but the read request is for 4KBytes, as soon as the request is completely within the disk buffer,
the reconnect with the host will be initiated. Second, a BFR or BER specifying less than a sector

of disk buffer space is not allowed.
Section 4.2.2 examines the effect of various BFR and BER settings on performance.

2.2 The Interphase Jaguar HBA

A Host Bus Adaptor is a disk controller linking a host processor to disks and other peripheral

devices attached to SCSI strings.



In RAID-I, the InterphaseJaguar [Jaguar]HBA communicates with the Sun4/280 host via a

VME interface.All commands, data and controlinformationpassed between the HBA and the

host are writteninto2 KBytes of sharedshortI/O space ofthe VME bus.

To issuea command to the Jaguar,the Jaguar-specificdevicedriveron the host processorsets

up an Input/Output Parameter Block (IOPB) in the VME short I/O space. The IOPB contains
a pointer to the SCSI command that will be sent to the disk, pointers to the data buffer and the

status block for the command in the host memory, and other control information.

There are two ways thatIOPBs can be submitted tothe Jaguar, through the Master Command

Entry and through the Command Queue. On power-up,the Jaguar has a Master Command Entry
(MCE) space allocatedto itin short I/O space. The MCE containscontrolinformationand a

pointerto space for an IOPB. Commands enteredintothe MCE are always executed with the

highestpriorityin the system, and can be used to perform error checking and flushingof the

queues. Also,upon power-up, the MCE can be used to initializea Command Queue and Work
Q_e'ues.

The Command Queue is a circular queue that can be initialized to contain up to 40 slots. Each

slot,or Command Queue Entry (CQE), containscontrolinformation(inductingthe work queue

into which the command willbe entered)and a pointerto an IOPB. After the initializationof

the queues iscomplete,commands submitted to the Jaguar are sentto the command queue first,

unlessthey go through the MCE interface.Then the controllerprocessorsubmits requeststo the

appropriatework queues.

Work queues containcommands destinedfora particulardevice.One Jaguar can support up

to 14 Work Queues (one foreach deviceon the two SCSI strings).A Work Queue entry contains

the controlinformationfrom the CQE and a copy of the IOPB referredto in the CQE. Once a

command entersa work queue,itsCQE on the command queue isfreed.From the Work Queues,

commands are submitted directlyto the disksusing the SCSI protocol.

When a command iscomplete,a command response block (CRB) isconstructedin the short

I/O space shared by the host and controller,and the host processorisinterrupted.The CRB

containsstatusinformation(work queue number, command tag number, completion status)and

a copy of the IOPB (so that the host can match the completed command with the appropriate

outstandingone). After the host reads the CRB, the space itoccupied in the shortI/O spaceis
freed.

One important featureof the Jaguar is that data passed through the Jaguar goes through

internalJaguar buffers.There are 128KBytes ofmemory allocatedon the Jaguar fordata buffers

and forother data structures.The bufferspace isallocated8KBytes at a time,adding overheads

to largeoperations,as discussedin Section4.6.The performanceof the Jaguar isalsodiscussedin
Section4.3.

2.3 The SCSI Protocol

This section describes the SCSI protocol, used as the interface between the Interphase Jaguar HBAs
and the Wren IV disks in RAID-I.

The SCSI (Small Computer System Interface) Protocol allows up to eight devices to communi-

cate on a bus or "string" at sustained speeds of 4-5 MBytes/sec [SCSI]. Future SCSI performance
will reach 10-20 MB/sec on fast/wide SCSI. Each device on the string can attain control of the

bus as a master or "initiator", or may be designated as a slave or "target" for the operation. In

6



RAID-I, the host bus adaptors function as initiators at all times, and the disks attached to each

SCSI string are always targets that receive commands to perform various I/O operations.

The SCSI protocol consists of a series of _phases', during which specific actions are taken by the
controller and the SCSI disks. Because it is a high-level, message-based protocol, SCSI inherently

has more overhead than simpler protocols. We chose SCSI partly because of its intelligence; the

amount of overhead that we incurred as a result is described in Section 4.6.

Section 2.3.1 describes each phase of the SCSI protocol, and Section 2.3.2 details the protocol,

applying it specifically to reads and writes using the Wren IV disk and the Iuterphase Jaguar HBA.

2.8.1 SCSI Phases

Bus Free: No device is currently accessing the bus.

Arbitration: When the SCSI bus goes free, multiple devices may request (arbitrate for) the bus.

Each device on the bus is given a unique string address. During arbitration, priority is given

to the SCSI device with the highest address.

Selection: After arbitration by an initiator succeeds, the selection phase informs the target that

it will participate in the operation. (This phase is fonowed by the Command phase.)

Reselection: After arbitration by a target device succeeds, the reselection phase is entered. This

occurs when a target wishes to resume an operation interrupted by a disconnect. Reselection

informs the HBA which outstanding operation is about to resume.

Command: During this phase, the initiator (controller) reads the SCSI command bytes from host

memory and sends them to the target device over the SCSI bus.

Data Transfer: The two data transfer phases allow data bytes to be sent across the SCSI bus

in either direction between initiator and target. Direction is specified with respect to the

initiator.

• DATA IN: Data is read from the target and sent to the initiator.

• DATA OUT: Write data is sent from the initiator to the target.

Message Phase: The two message phases allow messages to be sent across the SCSI bus in either
direction between initiator and target. Direction is specified with respect to the initiator.

These messages are used to perform control functions.

• MESSAGE IN:

- IDENTIFY: This message from the target after reselection specifies which target

device is going to resume its operation.

- SAVE DATA POINTER: This message from the target before a disconnection tells

the controller to save its _place" in the data transfer operation so that the data

operation can later resume without retransmitting data bytes.

- RESTORE DATA POINTER: This message from the target after reconnection tells

the host to set the value of the Current Data Pointer to the value of the Saved Data

Pointer.



- DISCONNECT: This message from the target indicates that the target is going to

give up the SCSI bus in order to perform certain operations internally, for example,

to perform a seek, to fill its buffers as specified by the BFR on a read operation, or

to empty them as specified by the BER on a write operation.

- COMMAND COMPLETE: This message is sent by the target to inform the initiator

that an operation is complete.

• MESSAGE OUT:

- IDENTIFY: This message from the controller at the start of an operation tells the

devices on the string the identity of the initiator and the desired target.

Status Phase: Immediately before the COMMAND COMPLETE message is sent, the target
sends the initiator status information about the command.

2.3.2 The Protocol

Figure 2 shows the SCSI phase transitions for a typical read operation.

Multiple I/O operations can be in progress at a time through a host bus adaptor. The setup

on the host machine for each command requires that the host create a command descriptor block
in host memory and allocate space for the operation's data and status blocks. The host then issues

the command to the HBA, including pointers to the data, status and command blocks in host

memory. The instruction also includes the SCSI address of the target device.

The HBA maintains two sets of pointers for each outstanding operation-the Current and the

Saved pointers. (There is at most one outstanding operation per disk.) The Current pointers point

to the next byte of command, data or status information to be transferred from host memory to

the device. The Saved command and status pointers always point to the start of their respective
blocks. The Saved data pointer initially points to the start of the data block. If a disconnect occurs

during data transfer, it is preceded by the SAVE DATA POINTER message issued from the target
device. This message updates the Saved data pointer to reflect the current position within the data

transfer. An interrupted operation may later resume (following a reconnection and a RESTORE

DATA POINTER message) from the position in the data transfer where the data pointer was last
saved. This eliminates the need to retransmit data bytes.

After the HBA has set up these pointers, it arbitrates for the SCSI bus. When it wins, it selects

the SCSI target device. During the selection, it asserts the ATTENTION line. This is a signal to

the target that the initiator wishes to send a message. This is necessary, since in the SCSI protocol,

all bytes of data and messages sent across the SCSI bus are requested by the target device and
acknowledged by the initiator device, regardless of the direction of the transfer.

The disk responds to the ATTENTION (ATN) signal by asserting the REQUEST (REQ) line

for the initiator, which responds with an IDENTIFY message in the MESSAGE OUT phase and

an assertion of the ACKNOWLEDGEMENT (ACK) line. (The REQ/ACK protocol for all that

follows is analogous, and will not be repeated.) The IDENTIFY message contains the target logical

unit number (LUN), and indicates whether the initiator is capable of disconnection. (In RAID-I,
all devices support disconnection.)

The next phase is the COMMAND phase, in which the target requests successive bytes of the

command. In general, the HBA uses DMA to read the comm_ad bytes from host memory. In the

specific case of the Jaguar HBA, the command bytes at this t'me are in Jaguar memory space in
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a device-specificWork Queue. From the work queue, the commands are sent across the SCSI bus
to the disk.

After it has received the command, the SCSI chip on the target disk decodes the instruction

and determines whether a disconnection is necessary. The disk will disconnect if a seek is necessary.

Also, on a read operation, a disconnect Will occur if the amount of data in the disk's buffer ready to

be transferred is less than the entire request, or less than specified by the buffer full ratio (whichever

is smaller). On a write, the Wren will accept data into the disk buffer while the seek, if necessary,

is being issued; a disconnect will occur when the buffer fills, or when the data for the operation is
completely contained in the buffer.

If a disconnect is necessary, the target issues a DISCONNECT message in the MESSAGE IN

phase. (Since no data has yet been transferred, the DISCONNECT message is not preceded by a

SAVE DATA POINTER message.) The target releases the busy signal and the bus goes free.

When the seek is complete, or when the relevant buffer ratio is met so that the disk is ready to

continue the operation, the target device arbitrates for the SCSI bus. When the disk gets the bus,

the RESELECTION phase is entered. The disk sends an IDENTIFY message in the MESSAGE

IN phase, followed by the RESTORE DATA POINTER message. The HBA then reconstructs the

logical thread between the request being resumed and the pointers relating to that operation in the
HBA's local memory.

The DATA TRANSFER phase now begins. If the operation is a read, then the phase is the

DATA IN phase, and the target device asserts the REQ line as it puts each byte on the SCSI bus.

If the operation is a write, then during the DATA OUT phase, the disk requests each byte, and the
controller responds by putting the data bytes on the bus.

Data transfer continues until the operation completes or until the need arises for a disconnect.

On a read, a disconnect will occur if the disk buffer empties (possible, since data enters the buffer

from the disk at 1.3 MBytes/sec and leaves over the SCSI bus at 4 MByte/sec) or if a cylinder
boundary is crossed, requiring a seek. On a write, a disconnect will occur whenever the disk buffer

fills with data transferred from the host; when enough data is written from the buffer to the disk

medium that the buffer empty ratio is met, the operation can be resumed.

To disconnect, the disk first sends a SAVE DATA POINTER message in the MESSAGE IN
phase, which the HBA acknowledges after it saves the data pointer. Then the disk sends a DIS-

CONNECT message, and after the HBA acknowledges it, the bus goes free.

As before, when the disk is ready to resume the data transfer, it arbitrates for the SCSI bus
and reselects the initiator.

When all the data has been transferred, the target device enters the STATUS phase and sends

a status message to the HBA indicating any errors that occurred during the operation.
Finally, the MESSAGE IN phase is entered, as the target sends a COMMAND COMPLETE

message to the initiator.

2.4 Problems Encountered with Sprite and the Sun4/280

This section discusses some characteristics of Sprite and the Stm4/280 that affect the performance

measurements that will be discussed in Section 4. They are included here as background material.

Section 2.4.1 describes the instruction sequence of a Sprite file system read; this sequence affects the

performance of RAID-I for large sequential transfers. Section 2.4.2 describes problems encountered

with the Sun 4/280's direct virtual memory addressing system.

10



2.4.1 Sprite

Thehostprocessorfor RAID-I is the Sun4/280,runningthe SpriteNetworkOperatingSystem.
Table2 summarizes the instructions necessary to issue a read from the Sprite fie system. These

instructions were counted by Mendel Rosenblum.

This instruction sequence is relevant because it affects the performance of R.KID-I for large

sequential operations.

Traditional file system workloads are characterized by small transfers, performed 4 KBytes or 8

KBytes at a time. [Ouster] showed that files are generally small, and are read and written in their

entirety. Sprite running on the 1LkID-I host works well for this traditional fie system workload,

but unfortunately, runs into problems for large operations.

All I/O on Sprite is done through the kernel; when the disk read is complete, for instance, the

data must be copied from kernel space into the appropriate user address space that initiated the

I/O operation. In addition, since I/O is performed through the cache on the Sun4/280 (described

in the next section in more detail), I/O operations incur a cache flush. The copy operation executes

at about 5 MBytes/sec, and is the largest problem for fast operation on the host. The cache flushes

take place at 12 MBytes/sec if the cache line is dirty, and 78 MBytes/sec ff the cache line is clean.

The effect of the copies ancl cache flushes is that the Sun4/280's memory system quickly becomes

saturated with so much DMA activity occuring. The effect of this bottleneck can be seen in Section
4.1.2 and Section 4.4.

Because large sequential transfers create a bottleneck in the host memory system when Sprite is

used, Mendel Rosenblum wrote a system call to eliminate much of the overhead generally associated

with Sprite This system call will be referred to throughout this paper as the "no-copy system call".

The purpose of this system call was to give us a measure of the raw performance possible on the

hardware for large sequential operations. Section 3.2 discusses the system call in more detail.

2.4.2 Sun4/280 DVMA Problem

An idiosyncrasy of RAID-I's host processor, the Sun4/280, caused problems early in the testing

phase of RAID-I. It was discovered that there were never more than a few concurrent I/O operations

in progress. Members of the Sprite group traced the problem to the DVMA system used by the

Sun4/280.

All DMA from VME-based devices to the Sun4/280 pass through the host's cache using virtual

addresses. To read the disk as a raw device, the sequence of events is as follows: the read system

call is issued, and the file system allocates a buffer for the data from the I/O operation. This kernel

buffer is mspped into a 1 MByte space in the address space of the currently executing process

(called the current context). During the I/O operation, the data is written to the mapped kernel

buffer. After the data transfer is complete, the kernel buffer is unmapped from the current context

and the cache is flushed. Data is copied from the kernel buffer to the user space that requested the

data, and the kernel buffer is freed.

Using this scheme, all DVMA must be done through a 1 MByte space in the current context. In

all, there are 16 contexts on the Sun4/280, but it is this same 1 MByte space that is mapped into

each of the separate contexts. They share it as they share a single copy of the kernel mapped into

each of their address spaces. So, in all there is 1 MByte of space available for concurrent DVMA

operations to use. (Actually, the space is slightly less than 1 MByte.) This space limitation reduces

the number of outstanding I/O operations to a few at a time.
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The Spritegroupwasableto circumventthis limitation by changingthe DVMA. Insteadof
goingthrough the i MByte spaceallottedto it in the currentcontext,DMA is now performed
through2 GBytesof anunusedaddressspace.This "fix_ virtually eliminated the limitation on the

number of concurrent operations that could be issued from the host.

3 Tools and Methods

I used a number of different tools and approaches to analyze the performance of ILkID-I. Section

3.1 describes traces of activity on the SCSI bus. Section 3.2 discusses programs used to generate

and evaluate I/O performance in the array. Section 3.3 describes modifications of the Sprite kernel

I used to stress the array and to trace operating system behavior.

3.1 Traces

Traces of activity on the SCSI bus were conected directly using the Ancot SCSI Bus Analyzer

[Ancot]. The Ancot records the timestamps of transitions of any of the fonowing control lines on

the SCSI bus: BSY (busy), SEL (select), ATN (attention), RST (reset), MSG (message), I/O (data
direction on the bus), C/D (control or data). The Ancot's timer has a resolution of 50 nanoseconds.

The Ancot is designed to allow trace data to be uploaded to an IBM PC/AT. Richard Drewes,

a member of the KAID group, wrote a program to upload those traces along a serial I_$232 llne

into the serial port of a Sun3 workstation. Traces were stored on disk, and then downloaded back

onto the Ancot for later analysis. Also, the encoded traces were processed on a Sun3, using various
awk and C programs to collect statistics on the traces.

Examples of this trace analysis are shown in Tables 3, 5, 7 and 9. The collected data includes the

percentage of time spent in each phase of the SCSI protocol and the time in each phase normalized

per I/O. (These tables are described in detail in Section 4.)

The size of traces recorded on the Ancot is limited by the size of the device's internal memory

(32K), and thus reflects I/O activity over a relatively short time-generally a few seconds. Longer
periods of I/O activity were monitored using statistics-gathering programs.

3.2 Programs

Peter Chen (another member of the RAID group), Richard Drewes and I wrote user-level programs

that generated I/O operations and gathered statistics on I/O activity. The statistics gathered using

these programs reflect the performance of the system including the overhead of the Sprite operating

system, described in detail in Section 4.1.2. Most of the programs were very simple, designed to

issue some number of random or sequential reads or writes, time the execution of the operations,

and report on the MBytes/sec or I/Os/sec aclfieved by the array. Peter Chen's "mult" program

was more sophisticated; it could issue requests as distributions of reads and writes of multiple sizes.
These features of the mult program were not used in the tests reported here.

3.3 Modified Sprite Kernel

There were two sets of modifications to the Sprite kernel. The first modifications were intended to

circumvent some Sprite processing in order to stress the RAID-I hardware. The second set allowed

tracing of Sprite activity during I/O operations.
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As discussedin Section2.4.1,the copy operationsand cache flushesthat occur during DMA

transfersto and from the disk cause a bottleneckon the host CPU's memory system for large

or sequentialoperations.To measure the raw performance of the array for largeoperations,we

needed to eliminatesome of theseDMA operations.Mendel Rosenblum wrote a system callthat

acceptsa buffercontainingup to 512 commands and puts them allon the devicedriverqueue at

once. This eliminatesmuch ofthe overhead normally requiredtoissuesubsequentcommands, since

returningto userlevelbetween thesecommands isnot required.Also,thissystem callallocatesa

singlebufferin DVMA space where the resultsof allthe I/O operationsare written.Subsequent

operationsoverwritethe data from the lastoperation;the data writtenby an I/O operationinto

DVMA spaceisnever copiedto the user'saddressspace,but issimplydiscarded.This system call

allowedus to measure the performance capabilitiesofthe hardware with minimal processingofthe

data being transferred.Performance measurements obtained using thissystem callrepresentan

optimisticupper bound on what the hardware can deliver.

To betterunderstand how the overhead limitingRAID performance is divided between the

operatingsystem and the controller,we modified a Spritekernelto recordthe timing of certain

I/O events.Of interestwere the time at which a command issubmitted to the devicedriverby the

filesystem,when the devicedriversignalsthe Jaguar controllerboard thata command isawaiting

execution,when the Jaguar interruptsthe host upon completion of SCSI activity,and when the

operatingsystem completes the operation. Resultsobtained using thiskernelare describedin

Section4.7.

4 Performance

We had two performance goals in RAID-I. We hoped to use the many available disk arms in the array

to demonstrate the ability of disk arrays to function well in environments that typically generate

small, random I/Os, such as database applications and traditional file systems. We also hoped to

demonstrate the high bandwidth possible using a RAID for large and sequential I/O operations

typical of scientific computing applications. The following sections examine both workload types.

Section 4.1 looks at the performance of disks on a single SCSI string, and the performance impact

of host software overhead. Section 4.2 examines the effect of varying user-settable disk parameters:

disk buffer readahead and the Buffer Full and Empty Ratios. HBA performance is examined in

Section 4.3. Overall large sequential performance (measured in MBytes/sec) is discussed in Section

4.4, while small random I/O rates for the array (measured in I/Os/sec)are described in Section
4.5. Overheads attributable to the disk and the HBA are discussed in Section 4.6. Section 4.7

describes the results obtained from the modified Sprite kernel described in Section 3.3, including

timing sequences from start to finish for various I/O operations.

4.1 Disk and String Performance

4.1.1 String Performance with Minimal Sprite

The performance results presented in this section axe for I/O operations generated using the special

no-copy system call described in Section 3.2.

Sequential Reads and the String Bottleneck
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Figure 3: Bandwidth for sequential read operations issued using the no-copy system call to disks

on a single string. A separate process issues requests to each active disk; from one to four disks are
active at a time.

Figure 3 shows the bandwidth attained on a single SCSI string performing sequential reads

using the no-copy system call. The first disk on the string is able to achieve its expected bandwidth

of 1.3 MBytes/second. When a second disk is added, the bandwidth approximately doubles for

large request sizes. However, when a third and fourth disk are accessed on the string, there is

very little performance improvement, indicating the existence of a performance bottleneck. The

maximum bandwidth obtained on the string is around 3 MBytes/sec, only 75 % of the expected

string bandwidth of 4 MBytes/sec. This 4 MB/sec transfer rate is agreed upon by the Wren IV

disk and the Jaguar HBA during a negotiation process in which they participate on power-up.

Trace analysis shows that data bytes do pass between the devices at 250 nsec per byte, but that the
expected sustained transfer rate of 4 MBytes/sec is not attained because of overheads associated

with the disk and controller in implementing the SCSI protocol. These overheads are described in
detail in Section 4.6.

Table 3 lists the percentage of time and the normalized time per I/O spent in each phase of the

SCSI protocol for a trace of 32 KByte sequential reads. A separate process issued these reads to
each of four disks on a single SCSI string.

The time spent in the arbitration phase is very short, indicating that four disks can perform large
sequential transfers without consuming much SCSI bandwidth with arbitration overhead. Most of
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the other SCSI phases (messages, selection,disconnects,reconnects, etc.) similarlyaccount for very

littletime in the lifeof the transaction.

Large sequential transfers are dominated by time spent in the data transfer phase, which ac-

counts for 93% of the time on the SCSI bus during this trace. This is not surprising, since for

sequential transfers,there are no seeks between subsequent transactions. Other overheads from

the protocol consume only a few milliseconds, and the minimum time in the data transfer phase

is 7.8 msec (the time to transfer 32 KBytes over the SCSI bus at 4 MBytes/sec). As mentioned

above, there are overheads within the data transfer phase that make the actual transfer time longer

than this minimum. In this trace, the time in the data transfer phase is approximately 10 msec

per transaction. The overheads that account for this longer transfer time are discussed in detail in

Section 4.6.

The SCSI bus is free only 1% of the time in this trace. The bus is fully utilized. Since only 75%

of the expected bandwidth from the string is achieved, 25% of the bandwith must be consumed by

SCSI overheads. Given these overheads, 3 MBytes/sec is the best bandwidth that can be achieved

on a single SCSI string.

Table 3 does not include normalized numbers for the average bus free time during a transaction.

Trace analysis does not give an accurate measure of average bus free time per I/O, since in this

trace there are four disks active on the SCSI string at a time, and their operations overlap. The

time that the bus is actually free in the trace represents the amount of time overall that there is

no such overlap.

An interesting question is how busy the host CPU is during this period. Unfortunately, this is

not a straightforward question to answer. Idle time on a CPU is measured by counting the number

of times that the CPU executes the instructions in an "idle loop". These instructions must be

fetched over the memory bus before they can be executed. It is our assertion that when performing

intensive I/O, the Sun4/280 host experiences saturation on its memory bus rather than in its CPU

because of all the copy operations performed by the operating system. This complicates the CPU

utilization measurements, because the DMA for the copy operations has precedence in acquiring

the memory bus over the CPU process attempting to execute the idle loop. If there is a lot of

trai_c over the memory bus, then the CPU will be slow in fetching subsequent instructions of the

idle loop, and its idle time will be underestimated in CPU utilization measurements. Thus, it will

appear that the CPU is highly utilized when it is actually the host memory system that is highly

utilized.

The "CPU utilization" numbers that can be measured, although not accurate measures of the

CPU's status for the reason just explained, nonetheless do allow a comparison to be made between

different workloads and how they stress the combination of the host memory and CPU. Such

numbers will be referred to here as Sun4/280 host utilization measurements. Low host utilization

numbers indicate that the Sun4/280's memory system is not highly utilized, and that the CPU has

no trouble fetching the instructions to execute the idle loop. High host utilization numbers indicate

that either the CPU or the memory system has become a bottleneck. In our case, the memory

system is generally the limiting factor for performance, due to the number of copy operations being

performed (see Section 2.4.1).

For 32 KByte sequential reads issued by the special no-copy system call to four disks on a string,

the host utilization measurement is 7.69%, indicating that the host memory system mad CPU are

not a performance limitation in this case.

Figure 3 represents performance of sequential reads when the disk buffers axe enabled for reada-
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Figure 4: Bandwidth for sequential writes generated using the no-copy system call. A separate

process issues requests to each active disk. The top line in the graph is the bandwidth for no-copy
sequential reads issued to four disks, included for comparison.

head. Much (or all, for small operations) of the data for a sequential read is contained in the disk

buffer before the operation begins. Section 4.2.1 examines the performance consequences of dis-
abling readahead in the disk buffers.

Sequential Writes

Figure 4 shows the performance for sequential writes issued to one, two, three and four disks
from the no-copy system call.

The bandwidth achieved for sequential writes is much lower than that for reads. For a single

disk, performance approaches 1.1 MBytes/sec only for the largest request sizes. By comparison,
in the sequential read case, 1.3 MBytes/sec was achieved even for small request sizes. Four disks

active on a string achieve only around 2 MBytes/sec, compared to 3 MBytes/sec in the sequential

read case. (The top line in the graph shows the sequential read performance for four disks, for
purposes of comparison.)

The disparity in performance results partly from the inability to use readahead, which helped

performance in the sequential read case. It also results partly from a longer data transfer phase on

write operations. Table 4 shows the breakdown of SCSI phase times for 32 KByte sequential writes
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to four disks. On average, 14 msec are spent in the data transfer phase compared to 10 msec for

sequential reads.
We examined a trace of 32 KByte sequential write operations on the Wren IV. On every trans-

action in the trace, the command was sent to the disk immediately followed by data. Each time,

the entire 32 KBytes of data were sent to the track buffer before the disk disconnected. Since the
new transaction holds onto the data bus in the Data Transfer Phase until all its data has been

transferred to the disk buffer, some transactions that could otherwise use the bus are unable to

do so. In addition, the data transfer phase of sequential write operations is longer than that of

sequential reads because the write operations suffer pauses during data transfer. These pauses

begin after the first 8 KBytes of data have been transferred, occur every 512 bytes thereafter, and
last for 100 to 400 msec. The pauses are caused either by the Jaguar or by the Wren IV; I was

unable to tell which, because the Ancot does not reveal the signals on the request and acknowledge

lines that would have revealed which component was holding up the transfer. These delays within

the data transfer phase explain why the bus continues to be fully utilized in this case but lower

bandwidth is achieved.

Another intersting observation about sequential write performance is that a single write spends

much longer on the Jaguar board than a read does. I suggest that the difference is caused by a missed

rotation on the sequential write operation. Tables 24 and 25 show a timeline for non-overlapped

sequential reads issued from the no-copy system call to a single disk. These timelines show that

approximately 16 msec of extra time is spent on the Jaguar board during write operations. About
4 msec of this time is due to the extra time spent in the data transfer phase in the sequential write

operation. The other 12 msec appears to be the results of a missed rotation. Between subsequent

operations, some processing in the Jaguar device driver and some setup time on the Jaguar board

are required; this processing consumes several hundred microseconds. Then SCSI overheads are

incurred. By the time the write operation actually is ready to write data from host memory to the

disk, the disk position has moved past the starting point for the write operation on the disk. The

12 msec extra time seen in the write trace compared to the read trace corresponds to about 3/4 of

a full rotation.

Host utilization is measured at 5.2% for this case, once again indicating that the Sun4/280 CPU

and memory system are not a bottleneck for operations issued by the special system call, since the

copy operation and most cache flushes are eliminated.

Random Reads

Figure 5 is a graph of I/O rates for small random read operations issued using the no-copy

system call for minimal Sprite processing. Table 5 shows the breakdown of the various SCSI phases
for two traces. Both involve 4 KByte random read requests to each of four disks on a single string.

The first set of measurements is for requests issued by a separate process for each disk. The second

set of measurements is for requests issued by four processes per disk.

The first three disks activated on a string get 30 I/Os/sec e_ch for 4 KByte random operations.

When four disks are active on a string, there is a slight performance degradation, with each disk

consistently achieving only 29 I/Os/sec. This slight decrease in I/O rate per disk for four disks on a

string is not the result of string contention; Table 5 shows that the SCSI bus is free approximately

2/3 of the time. The small degradation is also not the result of contention on the host memory
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Figure 5: I/O Rates for random operations generated using the no-copy system call.
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bus or CPU; host utilization measures only 7% in this case. Thus, the slight drop in performance

when four disks are active on the string must be caused by the Jaguar's internal processing.

Figure 5 shows that larger random operations suffer significant performance losses when a third

and fourth disk on the string are activated. This degradation is caused by utilization of the SCSI

string, which measures nearly 80 % for four disks performing 48 KByte operations.

The most dramatic differences between Table 5 and Table 3 are the decreased time spent in

the data transfer phase, and the increased percentage of time that the SCSI bus is free. Since

the transactions in the trace are small (4 KBytes), a short data transfer phase is expected. The

Jaguar controller is optimized for such short transactions, and performs efficiently. Thus, each data

transfer phase takes about 1.5 msec, only slightly longer than the minimum transfer time of 1 msec.

The increase in bus free time is also not surprising. These small operations are dominated by

average seek and rotation times (26 msec) plus the time to satisfy the Buffer Full l?_atio (3.3 msec

to move 4 KBytes off the disk head), which dwarf data transfer time (less than 1 msec for 4 KByte

transfers) and protocol overheads (a few msec). Even with an operation pending on each of the

four disks, the SCSI bus will be idle most of the time, because the disks spend most of their time

performing seeks.

The other phases of the SCSI protocol (selection, messages, status, etc.) show some small

deviations from Table 3, and because the request size is smaller in this case and the transaction

time is shorter, these phases account for a larger percentage of the total than they did in the

sequential read case. However, these other phases still represent a small fraction of the lifetime of

a transaction.

Random Writes

Small random write performance is actually better than small random read performance, as

shown in Figure 6. Each disk on the string achieves about 32 I/Os/sec for random writes, as

compared to 30 I/Os per second in the case of reads.

The slightly better performance is due to the ability of the disks to perform the seek simul-

taneously with the transfer of data into the disk buffer. This is not possible on random read

operations.

The significant differences between Tables 5 and 6 illustrate the different ways reads and writes

axe performed on the Wren IV disks. For reads, the seek is performed after the disk has relinquished

the SCSI bus; after the seek, the disk initiates a reconnect to transfer data. For writes, the seek is

begun concurrently with the data transfer phase, and the disk holds onto the SCSI bus for much

longer (16600 usec) than in the read case (1500 usec). Thus, for the read trace, the SCSI bus was

only about 33% utilized, while in the write case is is 99% utilized.

The kernel traces shown as timelines in Tables 30 and 31 show that a single operation spends

the same amount of time on the Jaguar board for random reads and writes. The difference in the

operations, apparent in Tables 5 and 6, is how long an operation holds on to the SCSI bus. For

small (4 KByte) random operations, this difference does not affect performance for write compared

to reads, since the SCSI bus had low utilization in the read case. The writes "use up" the remaining

bandwidth of the $CSI bus, and the resulting I/O rates in Figures 5 and 6 are very similar.
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String Performance including Sprite, Sequential Reads
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Figure 7: Bandwidth for sequential read operations issued from Sprite user level to four disks on a

single string. A separate process issues requests to each active disk. The top line in the graph is

the bandwidth for no-copy system call reads issued to four disks, included for comparison.

4.1.2 String Performance Including Sprite

This section looks at string performance when I/O operations are issued as raw disk requests from

Sprite user level, rather than with the no-copy system call. The previous section represented the

best performance that could be achieved on a string. There is an obvious drop in performance when

executing a "real" operating system. Unlike the special no-copy system call, the Sprite operating

system must return data to the user process that requested it. In order to do this, Sprite performs

a number of copy and cache flush operations. These operations cause contention on the Sun4/280

host's memory system, resulting in performance that is lower than the maximum numbers described

in the last section.

Sequential Reads

Figure 7 shows a graph similar to that of Figure 3. It depicts sequential read activity for one,

two, three and four disks on a single SCSI string. Here, the requests are issued as raw disk requests

from Sprite user level.

The performance of a single disk on the string is somewhat lower than the corresponding

performance in Figure 3. The highest bandwidth achieved is 1.2 MBytes/sec for request sizes in
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the range of 16 KBytes to 56 KBytes. For larger request sizes, the bandwidth drops to about 1

MByte/sec. There is no obvious explanation for the performance drop for larger requests. Tables 12

and 14 show the timelines for 128 KByte and 32 KByte sequential read operations. These time_nes

demonstrate that the time on the Jaguar board, the time for the DMA free cache flush operation

and the data copy time are all proportional to the size of the transfer. Since as many bytes must

be copied and flushed per MByte in either case, there appears to be no reason for the performance

drop for larger sequential reads issued from Sprite user level. This decrease has been consistently

measured over many iterations of the test, however.

The performance degradation for 32 KByte sequential reads issued under Sprite compared to

those issued from the no-copy system call is the result of the extra processing necessary when

Sprite is used. A comparison of the timelines in Tables 14 and 24 show that sequential reads

issued from the no-copy system call and from Sprite spend the same amount of time on the Jaguar

board. However, there is considerable extra processing evident in the Sprite timeliue. In particular,

significant time is spent doing the cache flush of DMA space and doing the copy of data from the

kernel to user space.

When a second disk on the string is accessed along with the first, the combined bandwidth of

the two disks is around 1.8 NIBytes/sec, compared to approximately 2.6 MBytes/sec in figure 3.

When a third and fourth disk are accessed, performance continues well under the level of Figure

3. The maximum bandwidth seen in the four disk cases is around 2.3 MBytes/sec, about 75% of

the 3 MBytes/sec bandwidth achieved for sequential reads issued to four disks from the no-copy

system call, shown in the top line of Figure 7 for comparison.

Table 7 shows the breakdown of time spent in the various SCSI phases for the 32 KByte raw

sequential reads issued to four disks (one process issuing requests per disk). The SCSI bus is idle

only 3.8% of the time in this trace. This number is slightly larger than the corresponding bus

free time in Table 3, but indicates that the SCSI bus is highly utilized, and is the reason for the

performance ]imitation of the string.

Tables 7 and 3 are surprisingly similar. The only signilicant di_erence is that a little more time

is spent in the data transfer phase in the Sprite trace.

The overall throughput of this trace is limited to 2.3 MBytes/sec. This turns out to be an

important number, since it is the maximum bandwidth that can be ac.hieved by the array under

Sprite on the Sun4/280. The host uti]ization, which measures 75.6% in this case, is the reason

for this ]imitation. It indicates that the host memory bus is rear.hing saturation, and cannot

support greater bandwidth. During Sprite I/O, the host performs copy operations and cache

flushes. These operations saturate the host memory system, and cause the performance bottleneck

at 2.3 MBytes/sec.

When the no-copy system call was used, the comparable host utilization for similar operations
was 7.69%.

Sequential WrRes

The performance of large sequential writes using full Sprite processing is shown in Figure 8,

and the SCSI phases for a trace of four disks performing 32 KByte sequential writes are described

in Table 8. Compared to Figure 4, where the operations were issued from the low overhead system

call and four disks achieved 2 MBytes/sec, in Figure 8 only 1.5 MBytes/sec is achieved. This 25%
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Sequential Write Performance, Operations Issued from User Level
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Figure 8: Bandwidth for sequential writes issued from Sprite user level. A separate process issues

requests to each active disk. The top line in the graph is the bandwidth of sequential reads issued

to four disks from Sprite user level, included for comparison.

difference in performance may be caused by a cache miss for the buffer from which data is being
transferred on the host.

The performance of user level sequential writes is also significantly lower than user level sequen-

tial reads, shown in the top line in Figure 8. In the last section, we observed that the trace of 32

KByte sequential reads issued from the special system call had data transfer phases that averaged

13 msec, instead of the minimum time of about 8 msec. In the case of 32 KByte sequential writes

issued from user level, the time spent in the data transfer phase averages 20 msec. A cache miss

would explain this discrepancy.

As in the no-copy system call traces, the traces of sequential reads and writes issued from Sprite

user level show that much more time is spent on the Jaguar board in a single user-level sequential

write than in a read. Once again, this increase can be explained by a missed rotation suffered by

sequential writes. In the user level I/O traces, the difference between the time spent on the board

for reads and writes is 10 msec. This is less than the 16.7 msec required for a full rotation, since

host processing overlaps about 6 msec of the disk rotation. Tb_is 6 msec of host processing can be

seen in Table 14 as the sum of the times required to perform the data copy, the cache flush, and

other Sprite operations.

The measured host utilization in this case is 36.3%, significantly higher than the 5.2% in the

case where writes were issued from the special system call, but significantly lower than the 75.6
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Figure 9: I/O Rates for small random reads issued from Sprite user level. A separate process issues

requests to each active disk. The top line in the graph shows the I/O rates for small random reads
issued from the no-copy system call, included for comparison.

% utilization for sequential reads. The reason that utilization is lower for writes than for reads is

that the DMA flush operation for a sequential write operation is much faster than for a sequential

read operation, since in the write case, the flushed cache blocks are likely to be clean. Tables 14
and 15 show that the DMA flush for reads is approximately five times slower in the read case. See

the discussion in 4.7 for more details on cache flushing rates.

Random Reads

Figure 9 shows the I/O rates achieved for small random reads issued from Sprite user level.

Compared to Figure 5, this graph shows a small performance Fenalty for small random operations

issued from Sprite user level. This penalty translates into a loss of 2 or 3 I/Os per second per active

disk when the random operations are issued from Sprite user level, or about 10% per disk. In the

case of four disks performing 4 KByte random reads on a string, issuing the reads from Sprite user

level results in an I/O rate of 103 I/Os/sec, while issuing them from the no-copy system call gave
114 I/Os/sec. The top line in Figure 9 shows no-copy read I/O rates for comparison.

This small performance degradation is due to the addition of full Sprite processing, including

copy and cache flush operations. The copy overhead is proportional to the size of the transfer, and

is relatively small for 4 KByte operations, so subsequent operations are issued fairly quickly. There
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is some delay in issuing subsequent operations, however, so the disks are not kept as busy as they

were when I/O was issued from the special system call.

Table 9 shows the breakdown for small random reads issued from Sprite user level. In comparison

to Table 5, Table 9 shows a slightly higher percentage of bus free time. This is evidence that there

is some effect from the delay in issuing subsequent instructions due to the data copy operation. The

number of I/Os per second is also reduced a little for the case of a single process issuing requests to

a partictLlar disk; this number drops to 121 from 130 in the earlier case. However, having multiple

processes issue requests to the four disks (to increase the depth of the request queues) brings the

total number of I/Os/sec back to previous levels, and to the maximum capabilities of the disks.
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Wren IV

Diameter

Formatted Capacity

Rotational Speed

Avg. rotation

Avg. seek
Surfaces

Heads

Tracks

Sectors per track
Data transfer rate

I/O rate (4KByte random reads)
Bytes per sector

5 1/4"

344 MBytes
3600 RPM

8.33msec

17.5msec

9

9

549 per surface
variable

variable, avg. 1.3 MB/sec

33 I/Os/sec
512 default

Table 1: Characteristics of Imprimis Wren IV Disks Used in RAID-I

SpriteInstructionCounts

Trap forread system call

Read system call;convertfilehandle to pointer

Look forrequestin cache

On cache miss,convertdata requestintodiskblock

address;generate"generic"SCSI command

Setup command in Jaguar devicedriver;

convertto Jaguar-specificcommand format;

stuffintoJaguar board;

allocateDMA spacefordata to be writteninto

(I/O issuedat thispoint)

Back out of routinesto wait forinterruptfrom disk

On interrupt,check the operation'sstatus;

freeDMA space used fordata

Copy 4K to userspace,back out of procedurecalls

(includes20 registerwindow overflow/

underflowpairs)
Total:13449 instr

118 instr

536 instr

192 instr

1228 instr

951 instr

443 instr

3548 instr

6433 instr

Table 2: Instruction counts for issuing a 4 KByte file system read operation from Sprite user level.
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Time in Each SCSI Phase Percentage

Arbitration .06 %

Selection .20 %

Command 4.02

Message Out .72

Message In .22

Data Transfer 93.15

Disconnect/Reconnect 0.11
Reselection 0.02

Status 0.45

Bus Free 1.05

Elapsed Time of Trace

I/Os completed

Bandwidth

%

%
%

%
%

%
%
%

Normalized

6.5 usec

22 usec

430 usec

77 usec

24 usec

10000 usec

12 usec

2.0 usec

48 usec

6.64 sec

620

2.92MBytes/sec

Table 3: Breakdown oftime inSCSI phasesfortraceof32 KByte sequentialreadsissuedby no-copy

system call.Four disksare activeduringthistrace,with a separateprocessissuingrequeststo each

disk.Note the high (99%) utilizationof the SCSI string.The column labeled"Normalized" gives

the averagetime per I/O spent in each phase ofthe protocol.

Time in Each SCSI Phase Percentage

Arbitration 0.07 %

Selection 0.14

Command

Message Out

Message In

Normalized

% 22

2.3 % 355
0.16 % 25

1.9 % 290

%
%
%

% 14400
% 16o

32

48

8.73sec

565

Data Transfer 93.1

Disconnect/Reconnect 1.06

Reselection 0.21

Status 0.31

Bus Free 0.77

Elapsed Time of Trace

I/Os completed
Bandwidth

11 usec

usec

usec

usec

usec

tibet

usec

usec

usec

2.02MBytes/sec

Table 4: Breakdown oftime inSCSI phasesfortraceof32 KByte sequentialwritesissuedby special

no-copy system call.Four disksare activein thistrace,with a separateprocessissuingrequeststo

each disk.
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Timein Each SCSI Phase

Arbitration .0.43

Selection 0.55

Command 6.21

Message Out 4.29

Message In 0.32

Data Transfer 20.0

Disconnect/Reconnect 0.38

Reselection 0.07

Status 0.68

Bus Free

I/O's per second

1 Process/Disk
L

Percentage Normalized

%

%

%
%
%

%
%

%
%

67.1%

33 usec

42 usec
480 usec

330 usec
25 usec

1500 usec
29 usec

5.4 usec
52 usec

130

4 Processes/Disk

.Percentage

132

0.37 %
o.52 %
6.33 %

4.37 %
0.32 %

20.4 %
o.38 %
o.o6 %
0.68 %
66.6 %

Normalized

28 usec

39 usec

480 usec

330 usec

24 usec

1500 usec

29 usec

4.7 usec

52 usec

Table 5: Breakdown of time in SCSI phasesfor two tracesof 4KByte random reads issuedfrom

the no-copy system call.Four disksare activein each case.The firsttwo columns show statistics

forrequestsgeneratedby a singleprocessper disk,and the second two show statisticsforrequests

generatedby fourprocessesper disk.

Time in Each SCSI Phase Percentage

Arbitration 0.2 %

Selection 0.2 %

Command 2

Message Out 0.1

Message In 1.8
Data Transfer 94.0

Dis connect / Reconnect 0.6
Reselection 0.005

Status 0.3

Bus Free 0.7

I/O'sper second

%
%
%
%
%
%
%
%

NormMized

35 usec

30 usec
360 usec
22 usec

330 usec

16600 usec
100 use(:
0.8 use:

48 usec

Table 6: Breakdown of time in SCSI phases for traceof 4KByte random writesissuedfrom No-

Copy system call.Four disksare activein thistrace,with a separateprocessissuingrequestto

each disk.*Because of recentproblems with the traceupload program, thesetracestatisticshad

to be gatheredby hand over a smallnumber ofI/Os. They are lessreliablethan the other tables,

so I don'tincludean overallI/O ratenumber here.
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Time in Each SCSI Phase Percentage
Arbitration 0.05 %

Selection 0.16 %

Command 3.0

Message Out 0.49

Message In 0.17

Data Transfer 91.9

Disconnect/Reconnect 0.07
Reselection 0.01

Status 0.41

Bus Free 3.8

Elapsed Time of Trace

I/Os complete
Bandwidth

%
%
%

%
%
%

%
%

Normalized

7.0usec

22 usec

420 usec

68 usec

24 usec

12800 usec

9.8 usec

1.4 usec

57 usec

8.72sec

625

2.24MBytes/sec

Table 7: Breakdown of time in SCSI phases for a trace of 32 KByte sequential reads i_sued from

Sprite user level. Four disks are active in this trace, with a separate process issuing requests to
each disk.

Time in Each SCSI Phase Percentage

Arbitration 0.05%

Selection 0.10%

Command 1.68

Message Out 0.11

Message In 1.25

Data Transfer 89.3

Disconnect/Reconnect O.77
Reselection 0.14

Status 0.22

Bus Free 6.41

Elapsed Time of Trace

I/Os completed
Bandwidth

%
%
%
%
%

%
%
%

Normalized

10 usec

22 usec

370 usec

24 usec

280 usec

19700 usec

170 usec

30 usec

49 usec

12.5 sec

566

1.42 MBytes/sec

Table 8: Breakdown of time in SCSI phases for trace of 32 KByte sequential writes issued from

Sprite user level. Four disks are active in this trace, with a separate process issuing requests to
each disk.
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Time in Each SCSI Phase Percentage

Arbitration 0.12 %

Selection 0.27

Command 5.66

Message Out 3.60

Message In 0.30
Data Transfer 18.7

Disconnect/Reconnect 0.53
Reselection 0.04

Status 0.62

Bus Free 70.2

I/O's per second

%
%
%

%
%
%
%
%
%

121

Normalized

9.6usec

22 usec

470 usec

300 usec

24 usec

1500 usec

44 usec

3.2usec

51 usec

Percentage
0.42 %
0.52 %
6.16 %
4.38 %
0.31%
19.7 %
0.38 %
0.06 %

o.68 %
67.4%

129

Normalized

33 usec

40 usec

480 usec

340 usec

24 usec

1500 usec

30 usec

4.7 usec

53 usec

Table 9: Breakdown of time in SCSI phases for two traces of 4KByte random reads issued from

Sprite user level. The first two columns show statistics for requests generated by a separate process,

and the second for requests generated by four processes _per disk.
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WritePerformancefor Random Operations, Issued from User Level

120, _\x

II0,

I00, "_. \
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80. _ \,, x,.x
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lOs/sex: -.. _ x\ \, .
""'..... _-._\" ".....No-copy random writes, four disks50.

""-.. _ ""-.._ "_...._

30......_"" _"-----.._ fourthreedi_ksdrags

20, "_ .......two disks

_ one disk
10,

0 • • • • • •

4 s t2 16 20 24 2+ 32 +m 4o 44 4s

Request size in Kbyms

Figure 10:I/0 Rates for small random writes issued from Sprite user level. A separate process

issues requests to each active disk. The top line in the graph shows the I/0 rates for small random

writes issued from the no-copy system call, included for comparison.

The Sun4/280 host utilizationnumbers forsmall random read operationsissuedto four disks

from Spriteuser levelis 21.3%. Compared to the 7.0% utilizationwhen requestswere issued

from the no-copy system call,the utilizationincreasecaused by includingallSpriteprocessingis

significant.

Random Writes

Figure 10 shows I/O rate performance for small random write operations issued from Sprite

user level. The penalty for including Sprite is about the same as in the random read case: close to

10% of the I/O rate per disk for small operations. The no-copy small random write performance

line is included in the graph for comparison. Table 10 shows the breakdown of time spent in the

various SCSI phases. Performance for random writes issued from Sprite is very close to that for
random reads.
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Figure 11: I/O Rates of four disks on one string configared as a single-row RAID device performing

random read operations. Parallelism of 4, 8 and 16 indicates the number of independent processes
issuing requests to the array. The top line in the graph shows small random reads issued from

Sprite user level; it is included for comparison.

4.1.3 String Performance including Sprite and the RAID Driver

Figures 11 and 12 show the performance of random read and write operations performed on four

disks on a string con:figured as a four-disk, single row RAID Level 5 logical device [RAID]. Requests

are issued to these disks using the RAID driver written by Ed Lee. Data is striped across the disks

in units of 32 KBytes. Requests of less than 32 KBytes are satisfied by a single disk. (Requests are
aligned on stripe unit boundaries.)

It is di_cult to compare the performance of disks accessed dJxectly with those accessed as part
of a RAID device. The goal in including these numbers is to demonstrate that the extra overhead

of executing the RAID driver has a sign£ticant effect on I/O rates, as seen in the top lines of Figures
II and 12.

I tested three different workloads: parallelism of 4, 8 and 16 processes issuing I/0 requests

to the 4-disk RAID at a time. Since the sectors requested were chosen randomly, more processes
issuing requests at a time increased the likelihood of disks being highly and evenly utilized. The

RAID device achieves about 95 I/Os per second in the random read case with parallelism of 16

and request size of 4 KBytes. This compares to approximately 105 I/Os per second achieved when
requests were issued from Sprite user level.

Write performance is poor in this case, since we axe performing small writes. On a RAID

device, a small write turns into four separate operations, since the old data must be read along
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Time in Each SCSI Phase Percentage Normalized
Arbitration

Selection

Command

Message Out

0.12 %
%

%
%

%
%
%

%
%
%

iii

26 usec

55 usec

1080 usec

60 usec

570 usec

3700 usec

410 usec

20 usec

120 usec

0.25

4.9

0.27

Message In 2.6
Data Transfer 16.9

Disconnect/Reconnect 1.88
Reselection 0.09

Status 0.53

Bus Free 72.4

I/O's per second

Table 10: Breakdown of time in SCSI phases for trace of 4KByte random writes issued from Sprite

user level. A separate process issues requests to each active disk.

Random Wri_ Operations Issued m Four-Disk RAID from RAID driver
10o. \

\

x

70" _.

..
%

I/Os/ sec _._" _,__

30. _"---- Sprit, random writes, four disks

1o, Parallelism = 8
Parallelism = 4

o
4 Ii 12 16 m 2_ 28 32 M 40 44 4_

Request size in KBytes

Figure 12: I/O Rates of four disks on one string configured as a single-row RAID device performing

random write operations. Parallelism of 4, 8 and 16 indicates the number of independent processes

issuing requests to the array. The top llne in the graph shows small random writes issued from

Sprite user level; it is included for comparison. Note that the I/O rates for the RAID device are

logical rather than physical I/Os, and actually represent four physical I/Os for each logical I/O.
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Sequential Read Performance With and Without Disk Buffer Re._d_ad
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// "

Figure 13: Bandwidth with and without readahead enabled for sequential read operations generated

using the no-copy system call to three disks on a single string. A separate process issues requests
to each active disk.

with the old parity, and when the parity has been updated, the new data and new parity must be

written. See [RAID] for a discussion of the small write performance issues in RA.]_. The small write

performance was about 27 (logical) small writes/sec, compared to 111 (physical) small writes/sec

performed from Sprite user level.

4.2 Disk Parameters

Very few parameters on the Wren IV disks can be varied by the user. Those that can include

the readahead enable bit, the Buffer Full Ratio and Buffer Empty Ratio. The following sections

describe the effect on performance of varying these parameters.

4.2.1 Using the Disk Buffer for Readahead

The hnprimis Wren IV disks have 32 KByte buffers through which all data is transferred. These

buffers are used for speed matching, allowing the disk to transfer data across the SCSI bus at 4

MBytes/sec instead of at the rate data comes off the disk head (1.3 MBytes/sec). In addition,

these buffers can be enabled to perform readahead to improve the performance of sequential read

operations.
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String Performance on Random Reads, With and Without Cache
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0

0

MB/_c
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Reque-,' size in Krbyte.

Figure 14: I/O Rates with and without readahead enabled for random reads generated using the

no-copy system call to three disks on a string. A separate process issues requests to each active
disk.

Figure 13 shows the performance of various numbers of disks with and without their disk buffers

enabled for readahead on sequential read operations. This test used the no-copy system call. The

gap in performance between enabling the disk buffers for readahead and not doing so is consistently

large for sequential operations. It is most dramatic on small requests, since when readahead is

enabled, these can come directly from the track buffer without waiting for additional disk accesses.

In contrast, as requests get larger than the full track buffer size (32K), the performance advantage

for readahead on the disk buffer narrows. On these Iarger operations, the track buffer wilI have

to be filled multiple times, and readahead win give an advantage only for the first 32 KBytes of a

request. This explains why the gaps in performance narrow as requests get large.

While track buffers enabled for readahead improve the performance of sequential reads, they

degrade performance very slightly for random reads. Figure 14 shows small random read operations

on a string with between one and four disks active, with and without readahead. The performance

difference is very small. Where there is a difference, the advantage generally goes to the case where

the track buffer is not enabled for readahead. Not surprisingly, it appears to take a little longer

to stop writing into the track buffer and perform a seek tha:, it does to perform the seek when

readahead is not being performed. The performance difference is shown in the graph.
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The advantage for sequential read operations is so large and the performance penalty for random

operations is so small that there is no reason to disable the readahead option on the Wren IV disk
buffers.

4.2.2 Buffer Full and Empty Ratio Effects

The role played by the Buffer Full Ratio (BFR) and the Buffer Empty Ratio (BER) was described
in Section 2.1.3. The BFR relates to reads, and specifies the amount of data that must be read into

the disk buffer before the disk attempts to obtain the SCSI bus to transfer data. The BER relates

to writes; after the data buffer fills with data to be written to disk, the disk will disconnect from
the SCSI bus and write the data from the buffer onto the disk medium. When the disk's buffer is

empty enough to meet the BER, then a reconnection will occur and more data will be accepted

by the disk from the HBA. (For simplicity, this section will refer to BFR and BER values by the

number of bytes represented by the ratio, rather than by the ratio itself.)

The choice of the BFR and BER parameters determines the number of disconnects and recon-

nects that win occur during an I/O. A small BFR (say, 512 bytes) will result in a large number of

disconnects during a read operation. Whenever the disk reads 512 bytes into its buffer, the disk will

attempt to get hold of the bus and transfer the data out. During the time it takes to arbitrate for

the bus, some more data for the request will be read into the buffer. Data can only be written into

the buffer at a rate of 1.3 MBytes/sec, but it is transferred across the SCSI bus at 4 MBytes/sec.
Thus, the buffer will soon be emptied, and a disconnect will occur. The smaller the BFR, the

more frequentare the disconnectsand the shorterthe time a particulardevicewillhold onto the

SCSI stringto transferdata,sincetherewillbe lessdata inthe bufferto transferout. Analogous

behavioroccursforwritesdepending on the valueof the BER.

From the SCSI phase tablesof Sections4.1.1and 4.1.2,we saw that disconnect,reconnect,

arbitrationand messages forsavingand restoringdata pointersaccountedfora very smallpart of

the lifetimeof atransaction.Sincedisconnectsarenot "expensive",we would expectthatchanging

the BFR and BER would not have much effect.This turns out to be truein the middle range of

possiblevaluesforthe BFR and BER. However, thereare some minor differencesthat resultfrom

changesin the BFR and BER in thisrange.Below,I explainthe expectedperformance differences

fordifferentBFR valuesand show experimentaldata to supportthesepredictions.(The remainder

ofthisdiscussionwillfocuson readsand the BFR. Analogous conclusionsapply forwritesand the

BER.)

Small random (e.g., 4 KByte) operations are dominated by their seek times. Good perfor-

mance on such operations depends on how quickly their seeks are issued. A large BFR allows

one transaction to transfer all its 4 KBytes of data before giving up the SCSI bus. A small (e.g.,

512 bytes) BFR, on the other hand, results in a number of disconnects during the 4 KByte data

transfer, allowing seek operations for other disks to be issued more quickly. Thus, somewhat better

performance for small random operations is expected for smaller BFRs.

By contrast, good performance for large operations depends on efficient data transfer. Large

BFRs are expected to do better for such workloads, since they allow a large amount of data to

be transferred for each SCSI disconnect/reconnect overhead. A small BFR for a very large (e.g.,

128 KByte) transfer would result in a large number of disconnects and reconnects. Although the

overhead for each disconnect and reconnect is small, the combination of so many is expected to be

significant enough to affect performance.
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Bandwidth of Sequential Reads, No-Copy System Call
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Figure 15: Bandwidth for sequential reads generated using no-copy system call for BFR = 16

KBytes and BFR = 512 bytes.
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These expectations generally agree with observed performance. Figure 15 shows sequential read

performance for one, two and three disks on a single string for BFR = 512 bytes and for BFR = 16

KBytes. These I/Os were generated using the no-copy system call. For one and two disks active

on a string, there is not a clear winner between the BFR values, although the smaller BFR is
ahead for more of the time. In the threefdisk case, the smaller BFR still wins on smaller operations

(up to about 32 KBytes) because the latency is lower with the smaller BFR. However, for larger

operations, the 16KByte BFR is a clear winner. As expected, in these larger operations the extra
disconnects and reconnects start to hurt performance for when the BFR is small, while in the large

BFR case, transfers are el_cient.

For random reads, Figure 16 shows that the difference in performance between the two BFRs

is consistently very small. However, in the small random case, the advantage consistently goes to

the smaller BFR. The reason for this is the same as mentioned above: for smaller operations, some

performance is lost if the BFR is too high, and one disk keeps the SCSI bus during data transfer

long enough that the latency of other operations is affected.

It is clear from the graphs that varying the BFR over the range of values shown doesn't have

much effect on performance. A BFR (or BER) in the middle range of possible values will make

little difference to overall throughput.

One BFR does result in dismal performance. Figure 17 shows the performance for one, two and

three disks performing sequential reads with a BFR = 32 KBytes. This corresponds to the entire

disk buffer on the Wren IV. When the entire buffer must be full before data transfer is initiated,

there are two effects. The first is that while arbitration, res@ection and identification are going

on (a process that takes hundreds of microseconds), no more data can be transferred into the disk
buffer from the disk. For any BFR except the largest, the overhead of reselection is overlapped

with data continuing to fill the disk buffer. By the time reselection is complete, more data than

the amount specified by the BFR is actually in the disk buffer, ready to be transferred to the host.

No such overlap of reselection overhead and writing into the disk buffer is possible when the BFR

requires filling the entire buffer before initiating the reselection. The second effect of the BFR =

32 KBytes is that very large latencies are introduced for any operations waiting to complete while

data is being transferred from the disk.

4.3 HBA Performance

Section 4.1.1 described the performance limitations of a single SCSI string. Another performance

limitation in RAID-I is the amount of bandwidth that can be sustained by a single Jaguar Host

Bus Adaptor.

Figure 18 shows evidence for this HBA bottleneck. The string limitation of Section 4.1.1 is

apparent in the figure when three disks on a single string do not achieve much of a performance

improvement over two disks. Moving one of the three disks to the second string controlled by

a single HBA results in better performance than the single string case, since much of the string
contention is alleviated. However, the performance achieved is less than the expected value of 3.9

MBytes/sec (three times the bandwidth possible on a single disk).

The top line on the graph indicates that the performance limitation is due to the capacity of

the HBA. If three disks are placed on three separate Jaguars, the full performance possible on each

disk is achieved. Again, the HBA has been regarded as a "black box" in this study; this bottleneck

is observed rather than explained.
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Bandwidth of Random Reads, No_Copy System Call
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Figure 16: Bandwidth for random reads generated from the no-copy system call for BFR = 512

bytes and BFR = 16 KBytes.
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Buffer Full Ratio = 1 Sequential Reads, Minimal Sprite
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Figure 17: Bandwidth for sequentialreadsissuedfrom no-copy system call,BFR = 32 KBytes
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RAID the First: HBA Bottleneck
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Figure 18: Bandwidth for sequential reads generated with the no-copy system call for one, two and
three disks arranged in various ways on the two strings of a single HBA, and three disks on three

HBAs. In each case, a separate process issued requests to each active disk.
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Interphaseconfirmedthat a single Jaguar HBA is capable of processing a maximum of 4

MBytes/sec total from the two strings attached to it. Since each SCSI string is nominally ca-

pable of achieving 4 MBytes/sec (or 5 with some other SCSI disks), it is clear that the Jaguar

was not really designed to support high bandwidth. Rather, it was designed for more traditional
systems requiring a high I/O rate. The differences in our design goals and those of the designers

of some of the components used in RAID-I are discussed in Section 6.

4.4 Overall Sequential RAID Performance

Figure 19 shows the performance of the disk array for sequential reads of size 32 KBytes, when up

to 13 disks are active in the array at a time. Programs that generated I/O activity on particular

disks were activated in a round-robin fashion on the strings, to avoid as much string contention as

possible. The tests for user level I/O used 11 disks on three strings, while the tests for the no-copy

system call I/O used 13 disks on four strings.

The lower line in the graph represents I/O operations issued from Sprite user level. It is obvious

that the bandwidth possible when sequential read requests are issued from Sprite user level is limited

to 2.3 MBytes/sec, no matter how many disks are active. Since in the case when requests are issued

from user level, most of the time is spent performing copy operations and cache flushes, we believe

that the Sun4/280 host's memory system is the cause of this performance limitation, rather than

the Sun4/280 CPU.

As explained earlier, host utilization numbers provide a way of comparing the relative utilization

of the Sun4/280's CPU and memory systems across the different workloads studied. The measured

utilization when 11 disks are actively performing 32 KByte I/Os issued from user level is 97.3%,

indicating that the memory system is completely saturated, and explaining the overall limitation

of 2.3 MBytes/sec.

The other line in the graph shows I/O operations generated by the special no-copy system

call for minimal Sprite processing. The graph rises steeply at first, with each disk providing its

maximum bandwidth. After 4 disks are active in the array, performance increases begin to level

off. For 13 active disks, approximately 7.5 MBytes/sec is delivered by the array. This bandwidth

is lower than anticipated. This performance limit is not caused by the Sun4/280 host utilization,

which measures 23.?8% when 13 disks are active. This value is larger than any of the numbers seen

in Section 4.1.1, but is still relatively low. The performance limit is also not caused by the string

or HBA bottlenecks, since each of the string/HBA pairs should be able to deliver 3 MBytes/sec for

a total of 12 MBytes/sec from the system.

Instead, the bottleneck is the result of saturation of the VME backplane. This is a surprise, since

we expected closer to 10 MBytes/sec before the VME became a bottleneck in RAID-I. However,

observing the behavior of the system when 13 disks are active shows that the VME bottleneck has

arisen earlier. By the time 8 disks are active on four strings, the VME/HBA connection with the

lowest priority on the backplane experiences so much delay in getting access to the VME that the

HBA begins to experience timeouts. As further evidence that the VME is a bottleneck, the disk

operations can be observed to complete in the exact order of their priorities on the SCSI bus and

on the VME backplane, which was not the case earlier when the VME bus was not particularly

heavily utilized.

The highest bandwidth ever measured on RAID-I was 9 MBytes/sec for 16 active disks per-

forming 128 KByte sequential reads.
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Bandwidthof 32 KByte Sequential Reads
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Figure 19: Ba_udwidth for 32 KByte Sequential Read operations for up to 13 disks over four strings

(each string on a separate HBA) in RAID-I. The top line shows performance for I/Os generated

from the no-copy system call, and the bottom line for those issued from Sprite user level.
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4.5 I/O Rates

Figure20showsI/O ratesachievedon 14 disks on four strings, each on a different HBA, performing

small (4 KByte) random reads, where the I/O operations were issued from Sprite user level and

from the no-copy system call.

The graph for operations issued from the no-copy system call is close to linear, increasing

approximately 30 I/Os per second per disk to 420 I/Os per second for 14 disks. The linear increase

shows that there is no bottleneck in this system other than what the disks themselves are capable

of delivering. The measured host CPU/memory bus utilization in the 14-disk case is 40%, but it

doesn't affect the number of I/Os per second achieved in the system.

However, when the requests are issued from Sprite user level, the I/O rates delivered by 14

disks are significantly lower. The first disk on each string contributes about 25 I/Os per second.

The number of I/Os per second per disk decreases as more disks are added. 14 disks achieve

approximately 275 I/Os per second, close to 20 I/Os per second per disk.

The host CPU/memory bus utilization measured for 14 active disks is 78.4%. This high uti-

lization is not solely the result of memory system contention due to copy and DMA cache flush

operations. We saw in the last section that Sprite could sustain 2.3 MBytes/sec of such activity,

and the 14 disks performing 275 I/Os per second generate only 1.1 MBytes/sec of bandwidth. High

host utilization in this case is mainly caused by the host CPU, which is required to perform 275

context switches per second. (A context switch takes about 1 msec in Sprite.)

Although we are encountering this host utilization limitation, we consider the performance

achieved by 1LkID-I on small random operations (275 I/Os per second) to be excellent. RAID-I

and Sprite deliver good performance for the small operations typical of current operating systems
and databases.

4.6 Measured SCSI Overheads

The Wren IV disk and the Interphase Jaguar HBA each contain a processor and a SCSI chip that

together implement the SCSI protocol. This implementation includes buffer allocation, saving and

restoring state, and controlling the REQ/ACK lines for data transfer. This section observes the

time required by each component for various parts of the SCSI implementation. Both components

are treated as "black boxes." Little information was available for explaining these observations.

Figure 3, which showed the bottleneck on a SCSI string, showed that about 25% of the av_able

bandwidth on the SCSI string was used up by overhead associated with the SCSI protocol when

four disks on the same string were accessed simultaneously. Table 11 shows a breakdown of the

overheads observed for a particular trace, that of successive 32 KByte sequential read requests

submitted to a single disk by a single process. The BFR for this trace was set at 1/2 (16 KBytes),
and the read-ahead cache was enabled. The overheads can be attributed either to the disk or the

controller, or sometimes to neither one, as in the case of an arbitration phase. Refer to Section 2.3

for a complete description of the SCSI protocol.

The trace reflects the following sequence. After receiving a command fxom the host, the con-
troller arbitrates for the bus, selects the target disk, and sends the command. The disk releases

the SCSI bus in order to fill its disk buffer to the amount required by the Buffer Full Ratio. When

the BFR is met, the disk re-establishes communication and transfers data until its buffer empties.

It then disconnects and again fills its buffer. After reconnecting and transferring the remainder of

the data, the disk signals that the command is complete, and the operation ends.
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I/O Ratesfor 4 KByte Random Reads
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Figure 20: I/O Rates for 4 KByte random reads performed on 14 disks on four strings (each string

on a separate HBA) in RAID-I. I/Os are issued from the no-copy system call in the top line, and

from Sprite user level in the lower line in the graph.
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MeasuredSCSI Overheads

Wren Jaguar neither/both
Command Setup:
Arbitration

Selection

Disk Pause before request for ID message
Command Phase, first byte

Acknowledge remaining 5 command bytes

Disk pause before disconnect request

Controller acknowledge of disconnect
Bus Free

Rearbitration

Reselection

Data Transfer:

Disk pause before request data byte

Controller ack after first 8 bytes

Data Transfer at 4 MB/sec

Contr. buffer allocation after 8 KBytes
Pause before save pointer request

Controller ack of save pointer
Controller ack of disconnect

Bus Free

Rearbitration

Reselection

Disk pause before request data byte

Controller ack after first 8 bytes

Data Transfer at 4 MB/sec

Contr. buffer allocation after 8 KBytes

Command Completion:

Disk pause beforestatusrequest
Controllerack of status

Controlleraz_kofcommand complete

27 usec

300 usec

185-285 usec

200-400 usec

185-285 usec

500-1000 usec

22 usec

11 usec

few usec

82 usec

300-1700 usec

100 usec

30 usec

82 usec

300-1700 usec

40 usec

24 usec

Total: 1.8 msec 2.4 msec

4 usec

3 usec

3 usec

3 usec

3 usec

3 usec

Table 11: SCSI Overheads traced during the execution of 32 KByte sequential read operation issued
using no-copy system call.
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There are several notable disk overhead values. During the command setup phase, the disk

pauses for 300 microseconds (usec) before requesting that a disconnect message be sent to the

controller. At the beginning of the data transfer phase, the disk waits for 185-285 usec after

reconnection is complete before requesting that it be allowed to send the first byte of read data

to the controller. Before the second disconnect, the disk pauses for 200-400 usec before requesting

that it be allowed to send a SAVE DATA POINTER message to the controller. Finally, when

the operation is about to complete, the disk pauses for 500-1000 usec before entering the STATUS

phase.
One of the notable controller overheads is the 82 usec pause before the controller acknowledges

the first 8 bytes of the data transfer; until the eighth byte has been sent, acknowledgments are

sent to the disk, but the DMA into the Jaguar's buffer space is not completely set up. Instead of

going to the buffer, the first eight bytes enter a FIFO on the controller. When the FIFO fLUs, the

controller cannot accept more data bytes until it moves the first data bytes out of the FIFO and

into its local buffers.

The largest controller overhead occurs after each 8 KBytes of data have been transferred to the

controller. These delays range from 300-1700 usec, and increase in size depending on the size of

the transfers. They occur because the Jaguar allocates its internal data buffer space 8 KBytes at

a time. (The Jaguar is designed specifically for traditional file system applications, and allocating

buffer space in pieces >8 KBytes was considered to be inefficient for these applications.) Whenever

an 8 KByte boundary is crossed during large transfers, another 8 KByte block of space must be

allocated in the Jaguar's memory. (Note that the initial allocation for each data transfer occurs

during the preceding disconnect, so the only pauses noticed are the ones that occur when an 8

KByte boundary is crossed during the transfer phase.)
One other controller overhead is notable. It takes the controller 100 usec to perform and

acknowledge the SAVE DATA POINTER operation.

The overheads add up to a total of about 4.2 msec for the operation, 1.8 msec attributable to

the Wren IV disk and 2.4 msec to the Jaguar HBA. The data hytes are transferred at a rate of 250

nsec per byte. At this rate, the transfer of the 32 KBytes of data requires 7.8 msec to complete.

So, out of a total of 12.0 msec that the bus is busy during the operation (data transfer time plus

SCSI overhead), overhead accounts for more than 1/3 of the time.

4.7 Timelines for I/O Operations

This section presents thnelines for various Sprite I/O operations. These measurements were ob-

tained by modifying the Sprite kernel to include instructions that read a high-resolution (1 usec)

timer whenever certain events occured during the course of an I/O operation.

The timing intervals of interest were:

• Start System Call: For requests issued from Sprite user level, this interval is the time between

the entrance to Sprite system call code and the procedure call into device driver code.

• Device Driver Time: This measurement records the time spent in the "generic" Sprite device

driver before being sent to the Jaguar-specific device driver.

• Jaguar Driver Time: Records time spent in the device driver specific to the Interphase Jaguar

HBA.

47



Start SystemCall
Device Driver Time

Jaguar Driver Time

Time on Jaguar Board

Start Jaguar Interrupt Handling
DMA Free Time

Processing before Copy

Kernel to User Copy

Finish Processing

Total Time per Call

Time Between Subsequent Calls

420 us

350 us

380 us

77900 us

67 us

9600 us

660 us

21000 us

200 us

111000 us

650 us

Table 12: Timeline of 128 KByte sequential read operations issued from Sprite user level.

• Time on Jaguar Board: Records the interval from the time when the SCSI command is

submitted to the Jaguar board until the first instruction of the Jaguar interrupt handier is

executed. The jaguar board does not interrupt the host until all disk activity is complete.

• Start Jaguar Interrupt Handling: Records the processing time in the interrupt handier up to
the DMA flush.

• DMA Flush: Time spent flushing the DMA space used in the data transfer with the Jaguar.

• Processing before Copy: Processing time between DMA flush and copy operation.

• Copy Time (Kernel to User for reads, User to Kernel for writes): The copy associated with a

read operation would occur at this point in the sequence. Data is DMA'd out of the Jaguar

and into the kernel's address space; after the DMA operation is complete, the data must be

copied from the kernel space to the user space that requested it.

On a write operation, the copy goes from user space to kernel space, and occurs in the

sequence after the "Start system call" interval, and before the "Device Driver Time" interval.

After being copied to kernel space, the data is DMA'd to the Jaguar board.

• Finish Processing: This interval records the time to complete the system call execution.

• Time between Subsequent Commands: This interval records the time in Sprite between fin-

ishing execution of one system call and starting processing on the next.

Tables 12 through 21 show the timelines for operations generated as raw reads and writes

from Sprite user level. These timelines show values averaged over approximately 50 operations.

The tables display timelines for sequential reads and writes of size 4 KBytes, 32 KBytes and 128

KBytes, and random reads and writes of size 4 KBytes and 32 KBytes.

There are a number of interesting measurements in these figures. First, it is clear that time on

the Jaguar board is the largest portion of each timeline. Most intervals on Sprite are very small by

comparison. Two operations in Sprite do take a significant amount of time, as described in Section

2.4.1. They are the flushing of the cache memory used for the DMA operation between the host

and a Jaguar HBA, and the copy between kernel and user space. Since these are the operations
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Start SystemCall
Userto KernelCopy
BeforeDeviceDriver
Device Driver Time

Jaguar Driver Time

Time on Jaguar Board

Start Jaguar Interrupt Handling

DMA Free Time

Finish Processing

Total Time per Call

Time Between Subsequent Calls

250 us

23400 us

170 us

260 us

390 us

97000 us

42 us

1800 us

680 us

124000 us

i 190 us
I

Table 13: Timeline of 128 KByte sequential write operations issued from Sprite user level.

Start System Call
Device Driver Time

Jaguar Driver Time

Time on Jaguar Board

Processing before Copy

Kernel to User Copy

Finish Processing

290

150

250

22800

Start Jaguar Interrupt Handling 21

DMA Free Time 2700

420

4230

170

Total Time per Call 31000

Time Between Subsequent Calls 190

US

US

US

US

US

US

US

US

US

US

US

Table 14: Timeline of 32 KByte sequential read operations issued from Sprite user level.

Start System Call

User to Kernel Copy

Before Device Driver

Device Driver Time

Jaguar Driver Time

Time on Jaguar Board

Start Jaguar Interrupt Handling

DMA Free Time

Finish Processing

Total Time per Call

Time Between Subsequent Calls

170 us

4500 us

120 us

200 us

270 us

38200 us

26 us

570 us

470 us

44500 us

2000 us

Table 15: Timeline of 32 KByte sequential write operations issued from Sprite user level.
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Start System Call
Device Driver Time

Jaguar Driver Time

Time on Jaguar Board
Start Jaguar Interrupt Handling
DMA Free Time

Processing before Copy

Kernel to User Copy

Finish Processing

Total Time per Call

Time Between Subsequent Calls

230 us

110 us

270 us

57600 us

32 us

2650 us

470 us

4450 us

170 us

66000 us

690 us

Table 16: Timeline of 32 KByte random read operations issued from Sprite user level.

Start System Call

User to Kernel Copy
Before Device Driver

Device Driver Time

:Jaguar Driver Time

Time on Jaguar Board

Start Jaguar Interrupt Handling
DMA Free Time

Finish Processing

Total Time per Call
Time Between Subsequent Calls

140 us

4400 us

150 us

225 us

260 us

58000 us

15 us

590 us

500 us

64300 us

440 us

Table 17: Timeline of 32 KByte random write operations issued from Sprite user level.

Start System Call
Device Driver Time

Jaguar Driver Time

Time on Jaguar Board

Start Jaguar Interrupt Handling
DMA Free Time

Processing before Copy

Kernel to User Copy

Finish Processing

Total Time per Call

Time Between Subsequent Calls

168 us

II0 us

170 us

4100 us

7 us

480 us

260 us

420 us

120 us

5800 us

90 us

Table 18: Timeline of 4 KByte sequential read operations issued from Sprite user level.
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Start System Call

User to Kernel Copy
Before Device Driver

Device Driver Time

Saguar Driver Time

Time on Jaguar Board

Start Jaguar Interrupt Handling
DMA Free Time

Finish Processing

Total Time per Call

Time Between Subsequent Calls

110 us

500 us

70 us

140 us

i70 us

17800 us

20 us

145 us

320 us

19300 us

120 us

Table 19: Timeline of 4 KByte sequential write operations issued from Sprite user level.

Start System Call
Device Driver Time

Jaguar Driver Time

Time on Jaguar Board

Start Jaguar Interrupt Handling
DMA Free Time

Processing before Copy

Kernel to User Copy

Finish Processing

Total Time per Call

Time Between Subsequent Calls

140 us

140 us

160 us

33600 us

28 us

480 us

300 us

500 us

85 us

35400 us

370 us

Table 20: Timeline of 4 KByte random read operations issued from Sprite user level.

Start System Call

User to Kernel Copy
Before Device Driver

Device Driver Time

Jaguar Driver Time

Time on Saguar Board

Start Jaguar Interrupt Handling
DMA Free Time

Finish Processing

Total Time per Call

Time Between Subsequent Calls

96 us

480 us

46 us

130 us

190 us

31700 us

18 us

240 us

380 us

33300 us

320 us

Table 21: Timeline of 4 KByte random write operations issued from Sprite user level.

51



that we claim tend to limit overall performance of RAID under Sprite, it is not surprising to see

that they make up a significant portion of the timeline for operations issued from Sprite user level.

One interesting measurement is the speed at which the data copy occurs. The rate at which

data is copied between kernel and user space varies somewhat with the size of the transfer. For

128 KByte operations, copy speed averaged 5.7 MBytes/sec. For 32 KByte operations, the copy

rate was around 7 MBytes/sec, and for 4 KByte operations, the rate was around 8 MBytes/sec.

The different copy rates can be explained by JOuster2], which measured data copy operations on

a Sun4; copies are performed at about 11 MBytes/sec when both the source and destination of

the copy are in the cache, and at about 5 MBytes/sec when neither object is cached. Large (128

KByte) copy operations are slower because the cache itself is only 128 KBytes, so the source and

destination are unlikely to be in the cache when he operation occurs. Smaller operations are more

likely to have cached data, and are therefore faster.

The cache flushing rates for the DMA flush operation were around 12 MBytes/sec for read

operations (where cache blocks tend to be dirty when flushed) and 50-70 MBytes/sec for write

operations (where cache blocks tend to be dean when flushing occurs). This explains why the

DMA flush operations in Tables 12 through 21 are four to five times longer for reads than for

writes, except for the 4 KByte operations. (These small operations must perform flushes 8 KBytes

at a time, which affects their flush times.)

Another observation from the graphs is that sequential write operations spend much longer on

the Jaguar board than do sequential reads of the same size. The differences in the timeline tables

range from 12 msec to 20 msec. The reason for this disparity is that on sequential write operations,

subsequent operations suffer a missed rotation on the disk, since by the time setup of the operation

is complete, the disk has spun past the point at which the previous operation stopped writing.

This observation can be used to compare the times spent on the :Jaguar board by sequential and

random reads and writes. Random and sequential reads of the same size differ in time spent on the

Jaguar by an amount approximately equal to an average seek plus an average rotation. Random

and sequential writes of the same size differ by a much smaller amount, approximately the time of

an average seek; both random and sequential writes suffer a rotation penalty.

For sequential reads, where no extra seek or rotation penalty is paid, the time on the Jaguar

board is proportional to the size of the transfer. Likewise, the time for copy and cache flushing is

proportional to the size of the transfer.

Processing for operations other than the copy, cache flush, and time spent on the Jaguar board

accounts for less than 5% of the lifetime of an operation in all the traces of Tables 12 through 21,

except for the 4 KByte sequential write trace, where such processing accounts for 14% of the total.

Tables 22 through 31 shows average timelines for events of interest in operations issued by the

no-copy system call. These events are:

• Time between Entry Avail and Submit Command: This rather cryptic description refers to

the interval from the time that the Jaguar interrupts the host to inform it that the Jaguar

is ready to accept a command for execution until the time that the command is actually

submitted to the Jaguar board. The code for this processing isin the Jaguar device driver.

• Time on Jaguar Board: Time from when command is submitted until the host processor

receives a completion interrupt from the Jaguar.

• Time between Interrupt from Jaguar and Entry Avail: This measures the interval between
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Time between entry avail and submit command I 340 us

Time on Jaguar board I 91500 usTime between interrupt and entry avail 180 us

Table 22: Timeline of 128 KByte sequential read operations issued from the special no-copy system

call.

Time between entry avail and submit command

Time on Jaguar board

Time between interrupt and entry avail
290 us I

10800 us

180 us

Table 23: Timeline of 128 KByte sequential write operations issued from the special no-copy system
call.

the completion interrupt from the Jaguar until the time that the Jaguar is ready to accept a

new command (in the Saguar driver procedure EntryAvail).

From Tables 22 through 31, it is clear that the Jaguar board is completely dominant in these

kernel traces. It is also obvious why host utilization is so low in the case of operations issued

from the no-copy system call, since there is no data copy or DMA cache flush operation between

subsequent operations in this case, and the processing time between successive operations is very
short.

Once again, the intervals on the Jaguar board indicate that operation time for random reads

and writes is roughly equal, while sequential writes suffer a penalty compared to sequential reads
due to the missed rotations.

As when operations were issued from Sprite user level, for sequential reads, where no extra seek

or rotation penalty is paid, the time on the Jaguar board is proportional to the size of the transfer.

5 Conclusions

The goal of RAID-I was to discover whether a disk array built from commercially available compo-

nents could provide adequate performance both for traditional file system and database applications

(small, random I/Os) and for large scientific and image processing applications (large, sequential

I/Os). Table 32 compares the expected performance of the components of RAID-I with those

actually measured. It reveals a hierarchy of bottlenecks in the system.

The most constraining performance limitation in the system is the memory bandwidth limitation

of the Sun4/280 host. This limits overall sequential performance to 2.3 MBytes per second, less

than can be achieved by just two Wren IV disks. CPU utilization on the Sun4/280 host limits

overall small random I/O rates on the array to around 300 I/Os per second. The next level in the

Time between entry avail and submit command

Time on Jaguar board

Time between interrupt and entry avail
120 us

24500 us

57 us

Table 24: Timeline of 32 KByte sequential read operations issued from the special no-copy system

call.
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I Time between entry avail and submit command
Time on Jaguar board

Time between interrupt and entry avail

200 us

40400 us

130 us

Table 25: Timeline of 32 KByte sequential write operations issued from the special no-copy system
call.

Time between entry availand submit command 130 us I

Time on Jaguar board 57000 us

Time between interruptand entry avail 54 us

Table 26: Timeline of 32 KByte random read operationsissuedfrom the specialno-copy system

call.

I Time between entry avail and submit command
Time on Jaguar board

Time between interrupt and entry avail

442 us

55500 us

100 us

Table 27: Timeline of 32 KByte random writeoperationsissuedfrom the specialno-copy system

call.

I Time between entry avail and submit command
Time on Jaguar board

Time between interrupt and entry avail
140 us I

3200 us

43 us

Table 28: Timeline of 4 KByte sequential read operations issued from the special no-copy system
call.

ITime between entryavailand submit command
Time on Jaguar board

Time between interruptand entry avail
120 us I

19400 us

46 us

Table 29: Timelme of 4 KByte sequential writes operations issued from the special no-copy system
call.

Time

Time

Time

between entry avail and submit command

on Jaguar board

between interrupt and entry avail
120 us I

33200 us

52 us

Table 30: Timeline of4 KByte random readoperationsissuedfrom the specialno-copy system call.

Time between entry avail and submit command ] 150 us

Time on Jaguar board I 32500 usTime between interruptand entry avail 60 us

Table 31: Timeline of 4 KByte random writeoperationsissuedfrom the specialno-copy system

call.
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bottleneck hierarchy is the VME backplane limitation. One of the big surprises of this study is

that the VME backplane limited bandwidth for operations using the no-copy system call to only

7.5 MBytes/sec in Figure 19. (The highest bandwidth ever measured on 1ZAID-I was 9 MBytes/sec
for 128 KBytes sequential reads.) This VME limit is significantly lower than the expected 15

MByte/sec limit. The next observed performance limitation is that of the Jaguar HBAs, which are

only capable of supporting 4 MBytes/sec from the two strings they control. If the other bottlenecks

of RAID-I were eliminated, the four HBAs in the system would limit performance to 16 MBytes/sec.

SCSI overheads limit bandwidth on a string to 3 MBytes/sec. The last performance limitation in

the system is the amount of data that can be delivered by the disks; I measured the expected

performance of 1.3 MBytes/sec for large operations and 30 I/Os per second for small operations

on the disks.

These results suggest a number of conclusions. First, a disk array built from off-the-shelf parts

has achieved reasonably good performance for small random I/O operations, the standard design

point for today's systems. However, the array is not adequate for providing high throughput for

large sequential operations. To get better performance out of an array like RAID-I, we need a
more powerful host CPU, a more powerful CPU on the controller (to handle the SCSI protocol

more quickly), and more bandwidth available on the controller. (The Jaguar can only absorb half

the potential bandwidth of the two strings attached to it.) The off-the-shelf parts used in the

construction of RAID-I were not designed with the large, sequential workloads that we used to

test RAID-I in mind. Rather, they were designed for traditional small random accesses, and they

do provide adequate performance for such applications. In our second RAID prototype, which

diverges substantially from the simple design of RAID-I, we hope to build controller boards that

can support the bandwidth of all the disks attached to them, so that we can realize the potential

bandwidth of the array.

The need for greater memory bandwidth on the host CPU deserves special consideration. This

was the single most important factor limiting the performance of the disk array, and it is not a

problem unique to the Sun4/280. Many of the fastest workstations currently being produced have
limited memory system bandwidth. The R.AID group is experiencing difliculting finding a machine

with adequate memory bandwidth to support the needs of our second prototype machine. Disk

arrays will not be able to deliver bandwidth to the CPU unless the memory system is capable of

consuming what the array delivers.
Sprite, with its long copy overheads and traditional file system style of accessing data 4 KBytes

at a time, is not particularly suitable for achieving very high bandwidth on the array when op-
erations are issued to raw devices from user level, as was done in most of the tests in this study.

In addition, when a RAID driver is used to access the disks, there will be additional overhead,

since in that case, small writes do parity updates that result in additional disk accesses. In order

to improve the performance of such writes, we plan to use the Log Structured File System being

developed at U.C. Berkeley, which turns all small write operations into large ones [1Zosenblum].

Operating systems should also support asynchronous I/O. This study showed a fundamental

performance difference between large sequential reads and writes. Write performance for a disk is

lower than read performance because disks appear to suffer a missed rotation on writes. Being able

to issue subsequent write requests before the current operation completes would allow this missed

rotation to be avoided. Asynchronous I/O is the key to improving sequential write performance.

A final conclusion of this work is that measuring the performance and attributing the overheads

of off-the-shelf hardware is a daunting task. One of the reasons that RAID-II will not be built
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Component
Singledisk
String (4  ks)
Overall (14 disks)
Overall (13 disks)

Best Ever (16 disks)

I/O Rates
Expected

25-30

100-120

320

I/Os per sec )
No-Copy Pull Sprite

27

103

270

Bandwidth

Expected
1.3

4

MBy_es/sec)

No-Copy

1.3

3

29

114

320

7.5

9

FullSprite

1.3

2.3

2.3

Table 32: Expected versusActual performance ofRAID-I foroperationsissuedfrom the No-Copy

specialsystem calland from Spriteuserlevel.I/O rateswere measured for4 KByte random read

operations.Bandwidth was measured for32 KBytes sequentialreadoperations.Bandwidth forthe

"Best Ever" casewas for 128 KByte sequentialreads.Note that the "expected" I0-15 MBy_e/sec

bandwidth forthe arrayk the expected limitof the VME backplane.

exclusivelyfrom off-the-shelfpartsisso thathardware and softwareinstrumentationcan be added

to the system to make performance measurements easier.
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